首页> 外文OA文献 >Analysis and Design of DLL-Based Frequency Synthesizers for Ultra-Wideband Communication
【2h】

Analysis and Design of DLL-Based Frequency Synthesizers for Ultra-Wideband Communication

机译:基于DLL的超宽带通信频率合成器的分析与设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ever increasing demand for high speed transmission of large data between the electronic devices within a wireless personal area network has been motivating the development of the appropriate wireless standards. Ultra-wideband (UWB) communication employs the unlicensed frequency spectrum of 3.1 ‒ 10.6 GHz and utilizes a low average transmit power to offer the potential for high data rates in short range wireless links. WiMedia specification for UWB employs a frequency hopping scheme which requires a very fast hopping speed of 9.47 ns. Also, the strong interferers from the coexisting wireless technologies put stringent requirements on synthesizer’s sideband spurs. Satisfying such challenging requirements using conventional frequency synthesis approaches is impractical and demands for exploration, analysis and design of new synthesizer architectures. Essential characteristics of a delay-locked loop (DLL), such as its first-order loop stability, relatively wide loop bandwidth, and low jitter accumulation, make DLLbased architectures attractive candidates for fast switching and low phase noise frequency synthesis applications. However, as an edge-combiner (EC) is required to produce different frequencies than that of the reference clock, any misalignment in equally-spaced DLL output edges will generate an erroneous periodicity, resulting in reference sideband spurs at the output spectrum of the frequency synthesizer. This thesis investigates the opportunities and challenges of employing DLL-based architectures to synthesize carrier frequencies for wireless applications, specifically UWB communication. The dissertation has contributed to two aspects of the topic; mathematical modeling and analysis, as well as circuit design and implementation. A comprehensive behavioral model of the harmonic spur levels in edge-combining DLL-based frequency synthesizers is developed which includes the effects of the stage-delay mismatch, the static phase error of the locked-loop, and the duty cycle distortion of the reference clock. Utilizing Fourier series representation of the DLL output phases, an analytical expression for synthesizer’s spur levels is derived. Applying Taylor series approximations and moment methods to the analytical formula, closed-form expressions are obtained for the probability density function and mean value of the harmonic spur magnitudes. Finally, a Monte Carlo-free spur-aware design flow is introduced which significantly accelerates the iterative design procedure of the synthesizer. Accuracy and robustness of the prediction method against wide-range values of the non-idealities are investigated and verified through Monte Carlo  simulations of the synthesizer’s behavioral and transistor-level model ina 65-nm CMOS process. Three DLL-based architectures are developed and designed. In the first architecture, fast hopping frequency synthesis is achieved by introducing an openloop compensation technique to keep the total delay-length of the delay line unchanged at the instant of band hopping. The relation between the compensation accuracy and the hopping speed is analyzed and formulated. In addition, to make the technique immune to process-voltage-temperature (PVT) variations, two calibration techniques are introduced. Furthermore, injection-locking technique is employed to reduce the total current consumption in the EC. The presented concept is supported by measurement results on a test chip implemented in a 65-nm CMOS process and achieves a worst-case sideband spur of ‒44 dBc and dissipates 21 mW of power at 1.2 V supply voltage. The second DLL-based synthesizer employs the concept of track-and-hold (T/H) technique to sample the lock control voltages and store them across the corresponding capacitors during a start-up phase. In normal operation, the loop control voltage is pre-charged to the corresponding stored voltage to perform fast channel switching. Since the presented architecture does not rely on the DLL bandwidth for fast switching, the existing tradeoff in phase-locked systems between the settling time and the control voltage ripples (which result in sideband spurs) is eliminated. Also, the delay line can be biased in low gain regions of its transfer function to reduce its noise amplification. The third DLL-based architecture merges the edge-combing and upconversion operations to achieve a low-power direct conversion IQ modulator based on subharmonic passive mixers and multiphase duty-cycled LO. The novelty of the architecture is in employing a quadrature mixer array in such a configuration that the upconversion of the baseband signal can be performed at a sub-harmonic of the LO. Therefore, the requirements on the frequency synthesizer circuitries and LO buffers are relaxed. In addition, since rail-to-rail clocks are provided easier at such low subharmonic frequencies, passive mixers are employed to further reduce the power dissipation and improve the linearity of the overall transmitter. Multiphase subharmonic LO clocks required by the proposed scheme are provided using a quadrature edge-combining DLL.
机译:在无线个人区域网内的电子设备之间高速传输大数据的需求不断增长,这已经激励了适当的无线标准的发展。超宽带(UWB)通信采用3.1×10.6 GHz的未许可频谱,并利用低平均发射功率为短距离无线链路中的高数据速率提供了潜力。用于UWB的WiMedia规范采用跳频方案,该方案要求9.47 ns的非常快的跳频速度。另外,来自共存无线技术的强大干扰源对合成器的边带杂散提出了严格的要求。使用常规的频率合成方法来满足这样的挑战性要求是不切实际的,并且对于探索,分析和设计新的合成器架构也存在着要求。延迟锁定环路(DLL)的基本特征,例如其一阶环路稳定性,相对较宽的环路带宽和较低的抖动累积,使得基于DLL的体系结构成为快速切换和低相位噪声频率合成应用的有吸引力的候选对象。但是,由于需要边沿组合器(EC)来产生与参考时钟不同的频率,因此等距DLL输出边沿中的任何未对准都会产生错误的周期性,从而导致该频率的输出频谱上的参考边带杂散合成器。本文研究了采用基于DLL的体系结构为无线应用(特别是UWB通信)合成载波频率的机遇和挑战。论文为该主题的两个方面做出了贡献。数学建模和分析,以及电路设计和实现。建立了基于边沿结合的基于DLL的频率合成器中谐波杂散电平的综合行为模型,该模型包括级延迟失配,锁定环的静态相位误差以及参考时钟的占空比失真的影响。利用DLL输出阶段的傅立叶级数表示,得出了合成器杂散电平的解析表达式。将泰勒级数逼近法和矩量法应用到解析公式中,可以得到谐波杂散大小的概率密度函数和均值的闭式表达式。最后,介绍了无蒙特卡洛的杂散感知设计流程,该流程大大加快了合成器的迭代设计过程。通过在65 nm CMOS工艺中对合成器的行为和晶体管级模型进行蒙特卡洛仿真,研究并验证了针对非理想值的宽范围值的预测方法的准确性和鲁棒性。开发和设计了三种基于DLL的体系结构。在第一种架构中,通过引入一种开环补偿技术来实现快速跳频合成,以使延迟线的总延迟长度在跳频瞬间保持不变。分析并提出了补偿精度与跳变速度之间的关系。另外,为了使该技术不受工艺电压-温度(PVT)变化的影响,引入了两种校准技术。此外,采用注入锁定技术来减少EC中的总电流消耗。所提出的概念得到了采用65 nm CMOS工艺实现的测试芯片上测量结果的支持,在最坏情况下,边带杂散达到‒44 dBc,在1.2 V电源电压下的功耗为21 mW。第二个基于DLL的合成器采用跟踪保持(T / H)技术的概念来采样锁定控制电压,并在启动阶段将其存储在相应的电容器中。在正常操作中,将环路控制电压预充电到相应的存储电压,以执行快速通道切换。由于所提出的体系结构不依赖于DLL带宽进行快速切换,因此消除了锁相系统在建立时间和控制电压纹波之间的折衷(这会导致边带杂散)。同样,可以将延迟线偏置在其传递函数的低增益区域中,以减少其噪声放大。第三种基于DLL的体系结构合并了边缘梳理和上变频操作,从而实现了基于次谐波无源混频器和多相占空比LO的低功耗直接转换IQ调制器。该体系结构的新颖之处在于采用正交混频器阵列,该配置使得可以在LO的次谐波下执行基带信号的上变频。因此,放宽了对频率合成器电路和LO缓冲器的要求。此外,由于在如此低的次谐波频率下更容易提供轨到轨时钟,无源混频器被用来进一步降低功耗并改善整个发射机的线性度。提出的方案所需的多相亚谐波LO时钟是使用正交边沿组合DLL提供的。

著录项

  • 作者

    Ojani, Amin;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号